
Scuba: Diving into Data at Facebook
- Lior et. al

Presented By - Sidharth Singla
 MMATH CS

OUTLINE
▪ Importance
▪ History
▪ Scuba: Introduction
▪ Use Cases
▪ Scuba Overview - Data Model; Data Layout; Data ingestion,

distribution and lifetime; Query Model; Query Execution

▪ Experimental Evaluation
▪ Related Work
▪ Future Work mentioned
▪ Conclusion
▪ Discussion

Importance
▪ Performance issues and monitoring considered seriously at

Facebook.
▪ Event latencies under a minute required.
▪ Infra team has to rely on real-time instrumentation to ensure

site is up and running.
▪ Real-time instrumentation required for

▪ Code regression analysis
▪ Bug Report Monitoring
▪ Ads revenue monitoring
▪ Performance debugging.

History

▪ Previously relied on pre-aggregated graphs and a MySQL
database of performance data.
▪ Too rigid and slow.

▪ Other query systems: Hive & Peregrine
▪ Data gets available typically after one day latency.
▪ Queries take minutes to run.

▪ Scuba built.

Scuba: Introduction

▪ Data management system at Facebook.
▪ Real-time analysis.
▪ Fast, scalable, distributed, in-memory database.
▪ Processes almost million queries each day.
▪ Ingests million of rows per second and expires data at the

same rate.

▪ Runs on hundreds of servers each with 144GB RAM in
shared-nothing cluster.

▪ Provides an SQL Query interface and a GUI that produces time
series graphs, pie charts etc.

▪ Compressed data stores in memory. Each table is partitioned
and distributed randomly across all the servers.

▪ sample_rate allowed to specify sampling of event.

Why name Scuba ?

▪ Start by high-level aggregate queries to identify interesting
phenomena in data.

▪ Dive deeper to find base data points of interest.

Use Cases
1. Performance Monitoring

Use Dashboards to visualise and monitor performance metrics like
CPU load, network throughput.

2. Trend Analysis

Look for trends in the data content. Eg. Extract sets of words from
user posts and look for

spikes in word frequencies over time.

3. Pattern Mining

Look for patterns based on different dimensions.

Scuba Overview

Data Model
Datatypes supported -
▪ Integer: Timestamp is also stored as Integer,
▪ String,
▪ Set of Strings: Represents say, words in a FB post,
▪ Vector of Strings: Ordered and used to stack traces.

Floats not supported.
Timestamp mandatory for each row.

Data Layout

▪ Data is stored in row order.
▪ No create table statement.
▪ Table is created on each leaf node whenever the leaf first

receives data for it.

▪ Table may exist on some leaves.
▪ Different schemas on leaves possible.
▪ Single table image presented to users. Missing columns -

NULL values.
▪ Columns may be sparsely populated.
▪ No complex schema evolution commands.

Data ingestion, distribution and lifetime
▪ Event occurs -> log entry written to Scribe.
▪ Scuba chooses two leaves at random. Batch of new rows are sent

to the leaf with more free memory, via Thrift API.

▪ Table rows end up partitioned randomly across all the leaves.
▪ A gzip compressed copy of the file is stored to disk for

persistence.
▪ Columns are compressed and new rows are added to the table in

memory.
▪ This total elapsed time is usually within a minute.
▪ Subsampling of data is supported.

Query Model
▪ Three query interfaces are supported

▪ Web-based interface
▪ Command line interface
▪ Thrift-based API.

▪ WHERE clause must contain a time range.
▪ Joins are not supported.

Query Execution

Experimental Evaluation
▪ Aggregation cost

▪ Independent of the amount of data at each leaf.
▪ Function of query and cluster size.
▪ Grows logarithmically on scaleup for query with large

aggregations.

▪ Time to scan data at each leaf
▪ Proportional to the amount of data at each leaf.
▪ Independent of the number of machines.

▪ Throughput(Queries/sec)
▪ Increases with the increase in number of clients until the

CPUs saturate.
▪ After that flattens.

▪ Response Time
▪ Each query response time increases in proportion to the

number of clients.

Related Work(Other systems for real-time analysis)
1. HyPer: Stores data in memory, single large expensive machine.
Does not use compression.
Scuba: Cluster of cheap small machines and easily scalable.

2. Shark and Impala: Analysis over data in HIVE. Cache data in
memory during query processing. Suffer long latency in importing
data to HIVE.

3. Powerdrill and Dremel: Google’s data management analytical
systems. Highly distributed, scale well, primary data copy lives on
disk.

4. Druid and rrdtool/MRTG: Imports data quickly, Aggregation
on import and provides fast query response time. Cannot drill down
to raw original data.
Scuba: Stack traces down to the actual code change.

Above systems neither trade accuracy for response time which is
main requirement at Facebook nor provide a way to expire data
automatically.

Future Work mentioned in paper
▪ Try columnar based approach.

▪ Experiment with BlinkDB techniques like precomputing
stratified samples.

▪ Revisiting TQuel to reason about time and intervals.

Conclusion
▪ Provides Automatic pruning of data.
▪ Stores data after sampling.
▪ No schema declaration needed.
▪ Table can contain rows with different schemas.
▪ Dozen different ways to visualise data.
▪ Queries run with best effort availability.
▪ Not a complete SQL database.

Discussion
▪ Why are Intermediate Aggregators required ? What purpose do they solve ?

Why not connect root aggregators directly to the leaf aggregators ?

▪ Latency and throughput are main concerns of Scuba. So why is compression
done ? Won’t it increase the latency of queries ?

▪ Joins are not supported. If joins are required, data needs to be combined from
multiple sources before importing. Isn’t it too inefficient for analytical queries
?

▪ Why multiple leaf servers on a single machine ? Why not use single machine
with less resources ?

